If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+16x+1=0
a = 8; b = 16; c = +1;
Δ = b2-4ac
Δ = 162-4·8·1
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{14}}{2*8}=\frac{-16-4\sqrt{14}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{14}}{2*8}=\frac{-16+4\sqrt{14}}{16} $
| 8x^2+16x+1=0 | | 12=x+1.6x | | 16(x)=9 | | X-(x÷.1)=48 | | 7x+11=5+6x | | x+0.13x=727 | | 9^(x-1)=0 | | 9^x-1=0 | | y^2+6y+42=0 | | 9^(x-1)-4.3^(x-1)+3=0 | | 2×3-10/3+k=0 | | 9^x-1-4.3^x-1+3=0 | | 4x+3=10x-27 | | -16t^2+16t-3.5=0 | | x/86=-8311.11 | | x/86=83.11 | | 7x+6=15+6 | | 7+2*x-6=17 | | 3x+5+9/7x=6-x+4²-(3x+3) | | 5x+9-6x-13+8x=-18 | | 7x+22=-18 | | X=(5x+2)(3x-4) | | 180-51=y+16 | | 6x+18+30+90=180 | | 6+7x-3=13+2x | | 6(x+3)–4=5(2–x) | | 5x-2=5x-6+4 | | 6x+2x-4=8x+6 | | 2x+3-4+6=45 | | 821=d+–179 | | d−–269=434 | | 4(x+5)=80,x= |